5,860 research outputs found

    Protocol Requirements for Self-organizing Artifacts: Towards an Ambient Intelligence

    Full text link
    We discuss which properties common-use artifacts should have to collaborate without human intervention. We conceive how devices, such as mobile phones, PDAs, and home appliances, could be seamlessly integrated to provide an "ambient intelligence" that responds to the user's desires without requiring explicit programming or commands. While the hardware and software technology to build such systems already exists, as yet there is no standard protocol that can learn new meanings. We propose the first steps in the development of such a protocol, which would need to be adaptive, extensible, and open to the community, while promoting self-organization. We argue that devices, interacting through "game-like" moves, can learn to agree about how to communicate, with whom to cooperate, and how to delegate and coordinate specialized tasks. Thus, they may evolve a distributed cognition or collective intelligence capable of tackling complex tasks.Comment: To be presented at 5th International Conference on Complex System

    Emotional Strategies as Catalysts for Cooperation in Signed Networks

    Get PDF
    The evolution of unconditional cooperation is one of the fundamental problems in science. A new solution is proposed to solve this puzzle. We treat this issue with an evolutionary model in which agents play the Prisoner's Dilemma on signed networks. The topology is allowed to co-evolve with relational signs as well as with agent strategies. We introduce a strategy that is conditional on the emotional content embedded in network signs. We show that this strategy acts as a catalyst and creates favorable conditions for the spread of unconditional cooperation. In line with the literature, we found evidence that the evolution of cooperation most likely occurs in networks with relatively high chances of rewiring and with low likelihood of strategy adoption. While a low likelihood of rewiring enhances cooperation, a very high likelihood seems to limit its diffusion. Furthermore, unlike in non-signed networks, cooperation becomes more prevalent in denser topologies.Comment: 24 pages, Accepted for publication in Advances in Complex System

    Similarity based cooperation and spatial segregation

    Full text link
    We analyze a cooperative game, where the cooperative act is not based on the previous behaviour of the co-player, but on the similarity between the players. This system has been studied in a mean-field description recently [A. Traulsen and H. G. Schuster, Phys. Rev. E 68, 046129 (2003)]. Here, the spatial extension to a two-dimensional lattice is studied, where each player interacts with eight players in a Moore neighborhood. The system shows a strong segregation independent on parameters. The introduction of a local conversion mechanism towards tolerance allows for four-state cycles and the emergence of spiral waves in the spatial game. In the case of asymmetric costs of cooperation a rich variety of complex behavior is observed depending on both cooperation costs. Finally, we study the stabilization of a cooperative fixed point of a forecast rule in the symmetric game, which corresponds to cooperation across segregation borders. This fixed point becomes unstable for high cooperation costs, but can be stabilized by a linear feedback mechanism.Comment: 7 pages, 9 figure

    Nonequilibrium phase transition in a model for social influence

    Full text link
    We present extensive numerical simulations of the Axelrod's model for social influence, aimed at understanding the formation of cultural domains. This is a nonequilibrium model with short range interactions and a remarkably rich dynamical behavior. We study the phase diagram of the model and uncover a nonequilibrium phase transition separating an ordered (culturally polarized) phase from a disordered (culturally fragmented) one. The nature of the phase transition can be continuous or discontinuous depending on the model parameters. At the transition, the size of cultural regions is power-law distributed.Comment: 5 pages, 4 figure

    Spatial patterns and scale freedom in a Prisoner's Dilemma cellular automata with Pavlovian strategies

    Full text link
    A cellular automaton in which cells represent agents playing the Prisoner's Dilemma (PD) game following the simple "win-stay, loose-shift" strategy is studied. Individuals with binary behavior, such as they can either cooperate (C) or defect (D), play repeatedly with their neighbors (Von Neumann's and Moore's neighborhoods). Their utilities in each round of the game are given by a rescaled payoff matrix described by a single parameter Tau, which measures the ratio of 'temptation to defect' to 'reward for cooperation'. Depending on the region of the parameter space Tau, the system self-organizes - after a transient - into dynamical equilibrium states characterized by different definite fractions of C agents (2 states for the Von Neumann neighborhood and 4 for Moore neighborhood). For some ranges of Tau the cluster size distributions, the power spectrums P(f) and the perimeter-area curves follow power-law scalings. Percolation below threshold is also found for D agent clusters. We also analyze the asynchronous dynamics version of this model and compare results.Comment: Accepted for publication in JSTA

    Statistical Dynamics of Religions and Adherents

    Get PDF
    Religiosity is one of the most important sociological aspects of populations. All religions may evolve in their beliefs and adapt to the society developments. A religion is a social variable, like a language or wealth, to be studied like any other organizational parameter. Several questions can be raised, as considered in this study: e.g. (i) from a ``macroscopic'' point of view : How many religions exist at a given time? (ii) from a ``microscopic'' view point: How many adherents belong to one religion? Does the number of adherents increase or not, and how? No need to say that if quantitative answers and mathematical laws are found, agent based models can be imagined to describe such non-equilibrium processes. It is found that empirical laws can be deduced and related to preferential attachment processes, like on evolving network; we propose two different algorithmic models reproducing as well the data. Moreover, a population growth-death equation is shown to be a plausible modeling of evolution dynamics in a continuous time framework. Differences with language dynamic competition is emphasized.Comment: submitted to EP

    Altruistic Contents of Quantum Prisoner's Dilemma

    Full text link
    We examine the classical contents of quantum games. It is shown that a quantum strategy can be interpreted as a classical strategies with effective density-dependent game matrices composed of transposed matrix elements. In particular, successful quantum strategies in dilemma games are interpreted in terms of a symmetrized game matrix that corresponds to an altruistic game plan.Comment: Revised according to publisher's request: 4 pgs, 2 fgs, ReVTeX4. For more info, go to http://www.mech.kochi-tech.ac.jp/cheon

    Prisoner's Dilemma cellular automata revisited: evolution of cooperation under environmental pressure

    Full text link
    We propose an extension of the evolutionary Prisoner's Dilemma cellular automata, introduced by Nowak and May \cite{nm92}, in which the pressure of the environment is taken into account. This is implemented by requiring that individuals need to collect a minimum score UminU_{min}, representing indispensable resources (nutrients, energy, money, etc.) to prosper in this environment. So the agents, instead of evolving just by adopting the behaviour of the most successful neighbour (who got UmsnU^{msn}), also take into account if UmsnU^{msn} is above or below the threshold UminU_{min}. If Umsn<UminU^{msn}<U_{min} an individual has a probability of adopting the opposite behaviour from the one used by its most successful neighbour. This modification allows the evolution of cooperation for payoffs for which defection was the rule (as it happens, for example, when the sucker's payoff is much worse than the punishment for mutual defection). We also analyse a more sophisticated version of this model in which the selective rule is supplemented with a "win-stay, lose-shift" criterion. The cluster structure is analyzed and, for this more complex version we found power-law scaling for a restricted region in the parameter space.Comment: 15 pages, 8 figures; added figures and revised tex

    Distinguishing the opponents in the prisoner dilemma in well-mixed populations

    Full text link
    Here we study the effects of adopting different strategies against different opponent instead of adopting the same strategy against all of them in the prisoner dilemma structured in well-mixed populations. We consider an evolutionary process in which strategies that provide reproductive success are imitated and players replace one of their worst interactions by the new one. We set individuals in a well-mixed population so that network reciprocity effect is excluded and we analyze both synchronous and asynchronous updates. As a consequence of the replacement rule, we show that mutual cooperation is never destroyed and the initial fraction of mutual cooperation is a lower bound for the level of cooperation. We show by simulation and mean-field analysis that for synchronous update cooperation dominates while for asynchronous update only cooperations associated to the initial mutual cooperations are maintained. As a side effect of the replacement rule, an "implicit punishment" mechanism comes up in a way that exploitations are always neutralized providing evolutionary stability for cooperation
    corecore